Paper Details

A Fixed Point Theorem for a Selfmap of a Compact S-Metric Space

Vol. 6, Issue 1, Jan-Dec 2020 | Page: 56-60

Upender S
Assistant Professor of Mathematics, Tara Government College (A), Sangareddy, Telangana, India.

Received: 28-02-2020, Accepted: 27-03-2020, Published Online: 19-04-2020


. Download Full Paper

Abstract

The purpose of this paper is to prove a fixed point theorem for selfmap of a compact S-metric space, and we show that a fixed point theorem of metric space proved by Brain Fisher ([5], Theorem 2) follows as a particular case of our theorem

References

  1. Ahmed, B., Ashraf, M., & Rhoades, B. E. (2001). Fixed point theorems for expansive mappings in D-metric spaces. Indian Journal of Pure and Applied Mathematics, 30(10), 1513–1518.
  2. Dhage, B. C. (1992). Generalised metric spaces and mappings with fixed point. Bulletin of the Calcutta Mathematical Society, 84(4), 329–336.
  3. Dhage, B. C. (1999). A common fixed-point principle in D-metric spaces. Bulletin of the Calcutta Mathematical Society, 91(6), 475–480.
  4. Dhage, B. C., Pathan, A. M., & Rhoades, B. E. (2000). A general existence principle for fixed point theorems in Dmetric spaces. International Journal of Mathematics and Mathematical Sciences, 23(7), 441– 448. https://doi.org/10.1155/S0161171200003112
  5. Fisher, B. (1978). A fixed-point theorem for compact metric spaces. Publicationes Mathematicae Debrecen, 25, 193– 194.
  6. Gähler, S. (1963). 2-metrische Räume und ihre topologische Struktur. Mathematische Nachrichten, 26(1-4), 115– 148. https://doi.org/10.1002/mana.19630260109
  7. Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2004). On the topology of D-metric spaces and generalization of D-metric spaces from metric spaces. International Journal of Mathematics and Mathematical Sciences, 2004(51), 2719–2740. https://doi.org/10.1155/S0161171204401631
  8. Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2005). On the concepts of balls in a D-metric space. International Journal of Mathematics and Mathematical Sciences, 2005(1), 133–141. https://doi.org/10.1155/IJMMS.2005.133
  9. Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2005). On convergent sequences and fixed-point theorems in Dmetric spaces. International Journal of Mathematics and Mathematical Sciences, 2005(12), 1969– 1988. https://doi.org/10.1155/IJMMS.2005.1969
  10. Sedghi, S., Shobe, N., & Aliouche, A. (2012). A generalization of fixed point theorem in S-metric spaces. Matematicki Vesnik, 64(3), 258–266.
  11. Sedghi, S., Shobe, N., & Zhou, H. (2007). A common fixed-point theorem in D*-metric spaces. Fixed Point Theory and Applications, 2007, Article 27906. https://doi.org/10.1155/2007/27906