A Fixed Point Theorem for a Selfmap of a Compact S-Metric Space
Vol. 6, Issue 1, Jan-Dec 2020 | Page: 56-60
Abstract
The purpose of this paper is to prove a fixed point theorem for selfmap of a compact S-metric space, and we show that a fixed point theorem of metric space proved by Brain Fisher ([5], Theorem 2) follows as a particular case of our theorem
References
- Ahmed, B., Ashraf, M., & Rhoades, B. E. (2001). Fixed point theorems for expansive mappings in D-metric spaces. Indian Journal of Pure and Applied Mathematics, 30(10), 1513–1518.
- Dhage, B. C. (1992). Generalised metric spaces and mappings with fixed point. Bulletin of the Calcutta Mathematical Society, 84(4), 329–336.
- Dhage, B. C. (1999). A common fixed-point principle in D-metric spaces. Bulletin of the Calcutta Mathematical Society, 91(6), 475–480.
- Dhage, B. C., Pathan, A. M., & Rhoades, B. E. (2000). A general existence principle for fixed point theorems in Dmetric spaces. International Journal of Mathematics and Mathematical Sciences, 23(7), 441– 448. https://doi.org/10.1155/S0161171200003112
- Fisher, B. (1978). A fixed-point theorem for compact metric spaces. Publicationes Mathematicae Debrecen, 25, 193– 194.
- Gähler, S. (1963). 2-metrische Räume und ihre topologische Struktur. Mathematische Nachrichten, 26(1-4), 115– 148. https://doi.org/10.1002/mana.19630260109
- Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2004). On the topology of D-metric spaces and generalization of D-metric spaces from metric spaces. International Journal of Mathematics and Mathematical Sciences, 2004(51), 2719–2740. https://doi.org/10.1155/S0161171204401631
- Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2005). On the concepts of balls in a D-metric space. International Journal of Mathematics and Mathematical Sciences, 2005(1), 133–141. https://doi.org/10.1155/IJMMS.2005.133
- Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2005). On convergent sequences and fixed-point theorems in Dmetric spaces. International Journal of Mathematics and Mathematical Sciences, 2005(12), 1969– 1988. https://doi.org/10.1155/IJMMS.2005.1969
- Sedghi, S., Shobe, N., & Aliouche, A. (2012). A generalization of fixed point theorem in S-metric spaces. Matematicki Vesnik, 64(3), 258–266.
- Sedghi, S., Shobe, N., & Zhou, H. (2007). A common fixed-point theorem in D*-metric spaces. Fixed Point Theory and Applications, 2007, Article 27906. https://doi.org/10.1155/2007/27906
Upender S
Assistant Professor of Mathematics, Tara Government College (A), Sangareddy, Telangana, India.
Received: 28-02-2020, Accepted: 27-03-2020, Published Online: 19-04-2020